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Abstract

Some experimental results from the literature are difficult to explain by the existing diffusion theories using a concentration gradient or a
swelling rate. A new diffusion mechanism is proposed, in which the driving force for diffusion is the sorption of penetrant molecules onto
polymer chains. Resistance of the matrix to the flow of penetrant opposes this force. Both forces are a direct consequence of molecular
interactions. The interaction between the solvent molecules can be expressed by viscosityh and by surface tensionTs. The interaction of
solvent with polymer matrix can be described by wettability (or contact anglea ). The molecular structure of the polymer and its density
fluctuations (average capillary radiusr) are also important. Swelling of the matrix will change the molecular geometry and thus solubility.
The rate of diffusion can be expressed asv� �Ts=4h�rcosa 1=�x0 1 B� and the diffusion distance asx0 � B��kt 1 1�1=2 2 1�; whereB andk
are diffusion constants. The concentration dependence on distance and time is well described by an empirical equationC=C0 �
exp�2�x=x0�ax0�; where constanta describes the sharpness of the diffusion front.

This model is applicable to swelling or non-swelling polymers, gels and porous media and can so far explain all the observed features of
the diffusion process.q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The observation of a sharp diffusion front [1,2], followed
by a constant concentration has shown that the Fickian
diffusion theory [3] is not directly applicable to polymers.
This theory has been adapted from the diffusion of heat [4],
and therefore assumes that all concentrations are equally
probable. It also ignores the unrealistically high diffusion
rates at the initial stages [5]. There have been many attempts
to modify the Fickian mechanism in order to explain the
observed concentration profiles. Most of the effort has
been put into theoretical work, as accumulation of reliable
and accurate experimental data is difficult. The concentra-
tion dependent diffusion coefficient [6] can only partially
explain the observed sharp diffusion front. The mechanism
of moving boundaries [7] is based on the assumption that
two substantially different diffusion coefficients describe the
diffusion in swollen and un-swollen regions. The diffusion
coefficient changes abruptly in the narrow front region,
providing a steep concentration gradient. The approach
can explain the observed sharp diffusion front and has
lead to the development of Case II mechanism [8–10].
The rate of diffusion in Case II mechanism is assumed to
be controlled by osmotic pressure, acting against the creep
viscosity of the swelling polymer in a narrow region of the

diffusion front. The diffusion rate is therefore predicted to be
constant, as some scientists have observed [11–12]. A concen-
tration gradient is still needed for molecular transport in the
swollen region. In order to explain a nearly constant concen-
tration, it is assumed that there is an insignificant resistance to
flow of the penetrant, i.e. a very high diffusion coefficient.

There are however several experimental observations
which the above mechanisms cannot explain. Some of
these have already been discussed in the literature and are
briefly summarised below.

2. Experimental observations

Any successful mechanism of solvent diffusion in poly-
mers, must explain at least the experimental observations of
the following features: sharp diffusion front and constant
concentration in the diffused layer [13–15], the observed
diffusion rate [5,16], accumulation of penetrant in cavities
or voids [16,17] and permeability rate directly related to the
diffusion rate and solubility [18].

2.1. The rate of diffusion

The differences between two major diffusion mechanisms
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(Fickian and Case II) are the concentration profiles and the
rate of diffusionv� dx0=dt: The diffusion distance for the
Fickian mechanism follows a functionx0 � at1=2; while for
the Case II it followsx0 � bt; (where a and b are constants
for the best fit to experimental data). Accurate measure-
ments (e.g. of methanol diffusion in polystyrene [16] or
PET [19]) however show that none of the above mechan-
isms or their combination�x0 � at1=2 1 bt� can explain the
measured data. It has been concluded in [5], that a finite rate
of diffusion at the initial stages of diffusion process and a
resistance of the polymer matrix to the flow of penetrant can
explain the measured diffusion rates very accurately. These
simple and logical requirements should therefore be incor-
porated into all diffusion mechanisms.

2.2. Constant solubility

Concentration gradient driven mechanisms require a
large range of equally possible concentrations and are
therefore not applicable to systems with only one thermo-
dynamically advantaged solubility. The experimental
observations, using numerous analytical techniques
[13–15,17,20], indicate that the concentration following
the diffusion front is constant within the accuracy of
experimental error. Even if we assume that there is a
concentration gradient, it will be very small. In order to
maintain the diffusion rate for a small concentration
gradient the diffusion coefficient for the swollen region
must be very high. This presents a contradiction for
observed permeability.

2.3. Permeability

The explanation of the observed concentration profile
has been based on an assumption of two different states
of polymer matrix. In the non-swollen region the diffu-
sion is slow and a steep concentration gradient is
formed. This is followed by an easy diffusion through
the swollen region, with a high diffusion coefficient. A
small concentration gradient is required to maintain the
flow, as the diffusion is controlled by the slow diffusion
in the diffusion front. The calculated and the observed
concentration profiles are in the first approximation simi-
lar. However, when the diffusion front reaches the outer
surface of the membrane, the whole membrane is
swollen and only one diffusion coefficient controls the
permeability. This is the case for Fickian diffusion. The
extraction of the permeant from the surface will reduce
the surface concentration and a high concentration gradi-
ent will be established. This would result in a very high
permeability, which is not experimentally observed. A
different explanation of the concentration profile is there-
fore needed.

2.4. Filling up voids

Voids in the polymer can be filled up by the penetrant.
This has been demonstrated on PS/methanol system [16]
using light microscopy observation and on epoxy/acetic
acid-water system using nuclear magnetic resonance
imaging (MRI) [17]. This means that mass transport can
occur from 100% concentration to low concentration as
well as from low concentration to a 100% concentration.
This effect cannot be explained by a concentration gradient
or by phase separation. Phase transition requires a substan-
tial change in solubility (molecular interaction) with
temperature and also some mass transport, but it is a differ-
ent process than isothermal diffusion. Osmosis also has to be
excluded, as the concentration of the penetrant inside the
void and outside the polymer has been found by NMR/MRI
[17] to be identical for different water/acetic acid mixtures.
No permselectivity, required for osmosis, has been observed
and filling up of voids also occurs for monomolecular pene-
trants [16]. Similar effect to void filling is the condensation
of penetrant on the other side of the membrane, when not
removed by evaporation or washed out. This clearly shows
that pure penetrant and the swollen polymer are two co-
existing equilibrium states. The properties of the penetrant
molecules, the polymer matrix molecules and the polymer/
penetrant mixture must therefore be all taken into account.

3. Diffusion mechanism of molecular sorption

It has long been recognised (mainly by those working
with filtration membranes and by biologists), that polymers
on a microscale are not homogeneous materials. The density
fluctuation in a matrix with randomly arranged polymer
chains is between two extremes: crystalline density and an
empty space. Computer simulation and experimental
measurements indicate that the spatial distribution of
density fluctuation is on a nm scale, providing therefore
sufficient ‘porosity’ for sorption and permeability of small
molecules, even without swelling or molecular dynamics.
The inhomogeneity of diffusion in the amorphous phase has
been demonstrated e.g. by electron microscopy [14] and
often an assumption of ‘diffusion channels’ is made in
order to explain some permeability effects in filtration
membranes [18]. The porosity has been investigated e.g.
by position lifetime spectroscopy [21] and has shown
pores of about 0.3 nm average diameter. In addition, poly-
mers can swell relatively easily by absorbing a solvent. In
this respect polymers behave like a porous medium, where
the driving force for diffusion is molecular interaction,
resulting in an internal pressure, similar to capillary pressure
observed on a macroscale.

The molecular interaction between the solvent molecules
can be expressed as surface tensionTs. Interaction with the
wall of a capillary tube of a radiusr (Fig. 1) can be measured
by a contact anglea . The resulting pressure can therefore be
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expressed as

pc � �2Ts cosa�=r
The capillary pressure is opposed by the resistance to flow
(Fig. 2). Poiseuille’s equation describes the pressure needed
for the flow of a liquid with viscosityh through a capillary
of radiusr, lengthl and at ratev as:

pf � �v8h1�=r2

For a flow of liquid the pressure needed to maintain velocity
v must be supplied by a capillary pressure, i.e.pc � pf : The
resistance to flow will change with the advancement of the
diffusion front and the tube lengthl will be replaced by a
variable diffusion distancex0. The rate of flowv thus will be:

v� dx0=dt � 2Ts cosa r2
=8hx0r

This can be rearranged in a more convenient form as

v� �Ts=4h� �cosa� r �1=x0� �1�
The first term,Ts/4h represents the molecular interaction

between the liquid penetrant molecules. Both are measur-
able parameters and can be correlated with others, such as
vapour pressure.

The second term, cosa represents interaction between
liquid penetrant molecules and the molecules of the polymer
matrix. This contact angle (or wettability) can be measured
with some success, but it would be difficult to replace it by
another parameter. It represents sorption of molecules by
the polymer and together with surface tensionTs is the
major driving force for diffusion in this mechanism.

The third term,r represents average size of inter-connect-
ing pores (or capillaries). The pores are opened further by
capillary forces to a level, which corresponds to an equili-
brium with the uncoiling of the polymer chains (solubility
level). This swelling process can only be in the direction
perpendicular to the diffusion front, as in the direction paral-
lel to the diffusion interface the surrounding material also
swells. The resulting anisotropy can be visualised in
polarised light.

The fourth term, 1/x0 describes the dependence of the
diffusion rate on the distance of the diffusion front from
the polymer/liquid interface. This is of practical interest in
order to evaluate the time dependence and permeability. We
can therefore consider the first three terms as a constantA
for a given polymer system and temperature. The rate of
diffusion must be finite at the very beginning of diffusion,
which can be achieved by assuming that the diffusion starts
at a given distanceB (see Fig. 3). It is also convenient for
simplicity of calculation to assume that the constantA�
B2k=2; where k is a constant. The rate of diffusion thus
will be:

v� B2k=2�x0 1 B� � dx0=dt �2�
The diffusion distancex0 can be calculated from Eq. (2) by
separating the variables and integrating:Z

B2kdt �
Z

2�x0 1 B�dx0

B2kt � �B 1 x0�2 1 C

The integration constant C for boundary conditionst � 0
andx0 � 0 is 2B2 and therefore

x0 � B��kt 1 1�1=2 2 1� �3�
It has been shown previously [5] that this equation can

explain the experimental data very accurately. This is shown
in Fig. 4, where the measured distance penetrated by metha-
nol in PMMA is plotted as the square root of time. The
intercept with they axis is 2B, the intercept with thex
axis is 1/k1/2 and the slope of the straight line isBk1/2.
Both constants are therefore measurable.

The concentration profile of the above mechanism has a
sharp diffusion front and for a homogeneous matrix a
constant concentration in the penetrated layer. It is possible
that in some systems the concentration will increase further
with time, causing some residual swelling. The concentra-
tion profile can be calculated from the mass conservation
equation:

v�dm=dx� � d�s1 m�=dt

wherem is the mobile mass ands is the mass sorbed on to
the matrix molecules. The solution to this equation is
cumbersome and in-practical. It can be replaced by a simple
empirical equation, which describes the concentration
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Fig. 2. Schematic diagram for Poiseuille’s equation, representing resistance
to flow of a liquid through a tube. For polymers the size of the capillary tube
varies along the diffusion path.

Fig. 1. Schematic diagram showing the molecular interaction parameters
responsible for capillary pressure. When applied to polymers, the capillary
radius represents an ‘average’ space between the molecular chains.



profile very well:

c=c0 � exp�2�x=x0�ax0� �4�
wherec0 is solubility anda is a constant, describing how
steep the diffusion front is. Fig. 5 shows the calculated
profiles for different values ofa. Fig. 6 shows the good fit
of this equation to data obtained by MRI [17].

4. Discussion

The mechanism of molecular sorption assumes, that

molecular interaction between the polymer chains and the
penetrant is attractive. There are very few cases when this
interaction is repulsive. An example is PTFE, which,
although highly porous, will not allow water to diffuse
into or through it. The interaction is dependent on functional
groups of both compounds and will to some extent vary
from region to region, depending on the orientation and
‘clustering’ of these groups. The detailed nature of molecu-
lar cohesive forces can only be speculated [22], but the
general opinion is that dispersive forces play a major role.
The general value of the cohesive forces can be estimated by
using thermodynamics [23] for internal pressure, which for
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Fig. 4. Graph of diffusion distance (inmm) versus square root of time with experimental data (X) fitted to the equationx0 � B��kt 1 1�1=2 2 1�: A straight line
extrapolated to data at large distances (forkt q 1; x0 � B�kt�1=2 2 B� intercepts thex andy axis at points corresponding to diffusion constants 1/k1/2 and2B,
respectively.

Fig. 3. The rate of diffusion dependence on the diffusion distancex0 (or t21/2). The limited velocity at the beginning is equivalent to a starting point at distance
x0 � B:



most compounds has values in the order of 3000 atm (water
has a value of 20 000 atm). This might explain why a 20mm
thick polymer film, sandwiched firmly between two 0.5 mm
thick glass slides, can fracture the glass when exposed to a
solvent.

It can be assumed that forces between dissimilar mole-
cules will be different, most probably lower. This is clearly
manifested by observed filling of voids [16,17]. Here the
molecular attraction between the penetrant molecules is
greater than between the penetrant molecules and the poly-
mer functional groups. When penetrant molecules diffuse to
the surface of a void, they attract each other and form a
liquid, filling up the space. The gas or air present in the

void will be compressed and absorbed by the penetrant
and/or by the swollen polymer matrix. The filling of voids
is a clear violation of the concentration gradient principle
and shows that concentration gradient driven mechanisms
are not applicable for diffusion of solvents into polymers.

A constant concentration throughout the entire penetrated
region indicates that a thermodynamic equilibrium has been
reached. When the supply of penetrant is discontinued, the
concentration remains unchanged and the diffusion front
also remains sharp, providing that the penetrant is not
removed by evaporation. This shows that the forces trying
to reach the equilibrium solubility are much greater than the
forces trying to reduce the concentration gradient. Therefore
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Fig. 6. The best fit to the MRI data from [17] for 0.5 and 18.5 h of immersion of epoxy in acetic acid. The concentration profile for 57.5 h is predicted. The MRI
data have not been corrected for resolution or distortion.

Fig. 5. Concentration profiles calculated from Eq. (4) for different values of a constant ‘a’. The slope of the concentration transition at the diffusion front, can
be selected.



the concentration gradient is clearly not the driving force
for diffusion when one concentration is thermodynamically
advantaged, in which case a phase diagram can be
established.

The concentration profile at the diffusion front is difficult
to measure. The spatial resolution, thickness correction,
contrast width, use of contrast enhancers etc. are rarely
considered and uncorrected data are presented in the litera-
ture. In addition the concentration variation can occur as a
result of the polymer matrix inhomogeneity. When the rate
of diffusion is higher in some regions than in others an
average concentration will show a broad front transition.
For a homogeneous matrix, the front should be very
sharp, as the molecular forces between penetrant molecules
are high and will not allow a gradient to be established. It is
difficult to study the geometry of diffusion on a microscale
or in 3D but it might be obvious that similarly to any fibrous
material the low density regions will have continuity, but
more theoretical and microscopical investigation is needed.

The t1/2 dependence of the diffusion distance means that
the diffusion rate is controlled by the resistance to flow. The
resistance to flow is dependent on the viscosity of the pene-
trant, on the size of open pores and on the distance from the
polymer surface. Diffusion rate is also influenced by the
attractive forces of the matrix and by the external pressure.
It may be possible in the future to predict the values of
diffusion, solubility and permeability for a given system,
using the above parameters. A comprehensive experimental
and theoretical study of various aspects of this mechanism is
in progress.

5. Conclusions

An alternative mechanism of diffusion is proposed, that
does not require a concentration gradient as a driving force.
It is based on molecular interactions between all compo-
nents and can so far explain all the observed effects of
mass transport. In particular, it can explain logically a
constant concentration and a sharp diffusion front, the rela-
tionship between permeability and diffusion rate, filling of
pores and the behaviour of multiple penetrants. Experimen-
tal evidences show that polymers behave like a porous
medium, with pores on a molecular scale. This mechanism
opens new possibilities in the effort to identify parameters
which control the diffusion processes. The important and
measurable parameters for diffusion are viscosity and
surface tension of the penetrant, contact angle between the
penetrant and the polymer and density and density fluctua-
tion of the polymer matrix. Alternatively, the rate of diffu-

sion in a particular polymer/solvent system can be described
by two measurable, temperature dependent constants ‘B’
and ‘k’. The third possible description of the principles
outlined here is thermodynamics, using parameters such
as chemical potentials, partial pressures, entropies and
enthalpies of mixing etc. These will be particularly
useful for evaluation of solubility levels and polymer
swelling equilibria, but unfortunately practical theories
are yet to be developed. The most popular (and successful)
Flory–Huggins approximation cannot unfortunately take
into account a specific molecular structure. More promising
are some new emerging theories, e.g. the Polymer Refer-
ence Interaction Site Model [24], or similar. A thermodyna-
mical approach is now being considered, but because of the
complexity of the treatment it will take some time to
develop. It will inevitably introduce parameters, which are
more difficult to obtain and verify than the parameters used
here, but it might provide a better understanding of the
fundamental principles of diffusion and miscibility, hope-
fully justifying some assumptions made here.
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